

Home Search Collections Journals About Contact us My IOPscience

Non-Pfaffian quasi-bi-Hamiltonian systems with two degrees of freedom

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1998 J. Phys. A: Math. Gen. 31 7113 (http://iopscience.iop.org/0305-4470/31/34/014)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.102 The article was downloaded on 02/06/2010 at 07:10

Please note that terms and conditions apply.

Non-Pfaffian quasi-bi-Hamiltonian systems with two degrees of freedom

Joseph Rabenivo[†]

LPA, Université de Pau et des Pays de l'Adour, Avenue de l'Université, F-64000 Pau, France

Received 9 December 1997, in final form 30 June 1998

Abstract. In the case of two degrees of freedom, a (non-Pfaffian) quasi-bi-Hamiltonian system with a separable integrating factor is presented (in terms of Nijenhuis coordinates) and its separability is proved. Indications are given in the case of a general integrating factor.

1. Introduction

Magri in 1977 [12] introduced a very interesting notion which explains the complete integrability [1–3] of certain Hamiltonian systems. Indeed, when a Hamiltonian vector field is also Hamiltonian for a second Poisson structure compatible with the previous one it is completely integrable under suitable conditions [12, 13]. Many classical dynamical systems in both finite and infinite dimensions are known to have such bi-Hamiltonian formulations [12, 13], and recent papers [11, 16] provide methods to construct a second compatible structure in certain examples. Nevertheless, it remains very difficult to exhibit [15] a bi-Hamiltonian structure for a given vector field. Moreover, the existence of such a structure on a whole neighbourhood of a Liouville torus, imposes for a large class of Hamiltonians very drastic conditions [4–6, 8].

For these reasons, we recently introduced a weaker structure called *quasi-bi-Hamiltonian structure* (QBHS) [7, 14]. We only ask for a Hamiltonian vector to be, after multiplication by some function (called the *integrating factor*) Hamiltonian for a compatible second Poisson bracket. This kind of structure is easier to obtain in explicit examples [15], and has in addition interesting properties concerning integrability [7, 14]. Moreover, the above strong conditions are relaxed [7, 14].

In this paper we study a QBHS with two degrees of freedom with a special type of integrating factor. Precisely, if a vector field X is Hamiltonian of Hamiltonian H for a first structure, and if ρX is Hamiltonian of Hamiltonian F for a compatible second one, we know that $\rho = -\lambda_1 \lambda_2 f(H, F)$ [7, 14], where λ_1, λ_2 denote eigenvalues of the Nijenhuis (1, 1)-tensor field defined by the two compatible Poisson brackets.

Here, we are interested in the special case $\rho = -\lambda_1 \lambda_2 f_1(H) f_2(F)$. We first prove that canonical coordinates associated to these eigenvalues (called *Nijenhuis coordinates*) also allow us to separate the Hamilton–Jacobi equation as in the Pfaffian case. Next, we give some results about the so-called Levi-Civita operator [3,9] for a general integrating factor. Finally, we attempt to touch on the separability of the Hamilton–Jacobi equation for general integrating factors.

0305-4470/98/347113+08\$19.50 © 1998 IOP Publishing Ltd

[†] E-mail address: rabenivo@univ-pau.fr

2. Reminder about QBHS

Definition 1 ([7, 14]). A Hamiltonian system (M, C_0, H) where M is a manifold of an even dimension endowed with a non-degenerate Poisson structure C_0 and $H \in C^{\infty}(M, \mathbb{R})$, is said to have a QBHS if it exists such that:

(i) a Poisson structure *C* compatible with C_0 , i.e. $C + C_0$ is also a Poisson structure, (ii) a function $F \in C^{\infty}(M, \mathbb{R})$, and

(iii) a non-vanishing function $\rho \in C^{\infty}(M, \mathbb{R})$ (called the *integrating factor*) so that the

relation:

$$C_0(.,H) = \frac{1}{\rho}C(.,F)$$
(1)

is verified.

The 6-tuple (M, C_0, H, C, F, ρ) is called a *quasi-bi-Hamiltonian system*. We remark that $C_0(F, H) = \frac{1}{\rho}C(F, F) = 0$; so that, F is a first integral of the Hamiltonian field $C_0(., H)$.

Definition 2. We say that a quasi-bi-Hamiltonian system (M, C_0, H, C, F, ρ) is real decomposable [5] if the operator $J = CC_0^{-1}$ (connecting the two compatible Poisson structures C and C_0) has the maximum number $(=\frac{1}{2} \dim M)$ of distinct real eigenvalues at each point (so that J is diagonalizable).

In the following, we assume $\dim M = 4$.

Proposition 1 ([7, 14]). Let (M, C_0, H, C, F, ρ) be a QBHS. If H and F are functionally independent, then $\frac{\rho^2}{\det I}$ is a function f(H, F) of H and F.

Remark 1.

(i) Note that the converse of proposition 1 is false (see [14] for the proof). In [7, 14] we have defined and studied a particular case (called Pfaffian QBHS) where $\frac{\rho^2}{\det J} = 1$, i.e. f(H, F) = 1, and H and F are not necessarily functionally independent. So we have $\rho = -\lambda_1 \lambda_2$, where λ_i (i = 1, 2) are eigenvalues of J.

(ii) Since C_0 and C are compatible, the eigenvalues λ_i (i = 1, 2) of the operator $J = CC_0^{-1}$ are in involution with respect to the C_0 and C [12, 13]. We suppose that they are real, distinct (i.e. J is real decomposable) and functionally independent. Hence, we can complete (λ_1, λ_2) [7] by functions $(p_{\lambda_1}, p_{\lambda_2})$ so that $(\lambda_1, \lambda_2, p_{\lambda_1}, p_{\lambda_2})$ are canonical coordinates. They are called *Nijenhuis coordinates* [7].

We also recall below an important result concerning the study of a Pfaffian QBHS with respect to these canonical coordinates.

Proposition 2 ([7, 14]). Let $(M, C_0, H, C, F, -\lambda_1\lambda_2)$ be a Pfaffian QBHS. In the Nijenhuis coordinates, the Hamiltonian H and the second Hamiltonian F take the following forms

$$H = \frac{H_1(\lambda_1, p_{\lambda_1}) - H_2(\lambda_2, p_{\lambda_2})}{\lambda_1 - \lambda_2}$$
(2)

$$F = \frac{-\lambda_2 H_1(\lambda_1, p_{\lambda_1}) + \lambda_1 H_2(\lambda_2, p_{\lambda_2})}{\lambda_1 - \lambda_2}.$$
(3)

Definition 3. We say that the pair (H, F) of functions satisfying (2) and (3) presents a *Pfaffian Gantmacher form*.

Remark 2. The condition (2) implies that the Nijenhuis coordinates separate Hamilton–Jacobi equation associated with the system. In fact, the Levi-Civita operator [3,9] denoted by LV applied to H vanishes, where

$$LV = \frac{\partial}{\partial\lambda_1} \frac{\partial}{\partial\lambda_2} \frac{\partial^2}{\partial p_{\lambda_1} \partial p_{\lambda_2}} - \frac{\partial}{\partial p_{\lambda_1}} \frac{\partial}{\partial\lambda_2} \frac{\partial^2}{\partial p_{\lambda_2} \partial\lambda_1} - \frac{\partial}{\partial p_{\lambda_2}} \frac{\partial}{\partial\lambda_1} \frac{\partial^2}{\partial p_{\lambda_1} \partial\lambda_2} + \frac{\partial}{\partial p_{\lambda_1}} \frac{\partial}{\partial p_{\lambda_2}} \frac{\partial^2}{\partial\lambda_1 \partial\lambda_2}$$
(4)

provided that $\frac{\partial H}{\partial p_{\lambda_i}} \frac{\partial H}{\partial \lambda_i} \neq 0$ for i = 1, 2.

In the following section, we study a QBHS (M, C_0, H, C, F, ρ) with a general integrating factor. At first, we take interest in the case where the integrating factor $\rho = -\lambda_1 \lambda_2 f(H, F)$ can be written $\rho = -\lambda_1 \lambda_2 f_1(H) f_2(F)$, where f_1 , f_2 are two non-vanishing functions in $C^{\infty}(M, \mathbb{R})$, called here *separable form*. After that, we give some results about the general case (without restriction on the function f(H, F)).

3. The QBHS with a separable integrating factor $\rho = -\lambda_1 \lambda_2 f_1(H) f_2(F)$

Results concerning this case are stated in the following proposition.

Proposition 3. Let (M, C_0, H, C, F, ρ) be a QBHS. If the integrating factor has the separable form $\rho = -\lambda_1 \lambda_2 f_1(H) f_2(F)$, then in Nijenhuis coordinates $(\lambda_1, \lambda_2, p_{\lambda_1}, p_{\lambda_2})$, the functions H and F take the following forms:

$$H = h\left(\frac{H_2(\lambda_2, p_{\lambda_2}) - H_1(\lambda_1, p_{\lambda_1})}{\lambda_2 - \lambda_1}\right)$$
(5)

$$F = g\left(\frac{-\lambda_1 H_2(\lambda_2, p_{\lambda_2}) + \lambda_2 H_1(\lambda_1, p_{\lambda_1})}{\lambda_2 - \lambda_1}\right)$$
(6)

where h and g are functions deduced from f_i .

Moreover, the Hamilton–Jacobi equation associated with the system is separable in these coordinates.

Proof. First, we recall [7, 14] that in the Nijenhuis coordinates $(\lambda_1, \lambda_2, p_{\lambda_1}, p_{\lambda_2})$, the two Poisson structures C_0 and C can be written respectively

$$C_0 = \frac{\partial}{\partial \lambda_1} \wedge \frac{\partial}{\partial p_{\lambda_1}} + \frac{\partial}{\partial \lambda_2} \wedge \frac{\partial}{\partial p_{\lambda_2}}$$
(7)

$$C = \lambda_1 \frac{\partial}{\partial \lambda_1} \wedge \frac{\partial}{\partial p_{\lambda_1}} + \lambda_2 \frac{\partial}{\partial \lambda_2} \wedge \frac{\partial}{\partial p_{\lambda_2}}.$$
(8)

Therefore, relation (1) defining a QBHS with integrating factor $\rho = -\lambda_1 \lambda_2 f_1(H) f_2(F)$, can be defined explicitly by equations:

$$\frac{\partial H}{\partial \lambda_1} = -\frac{1}{\lambda_2 f_1 f_2} \frac{\partial F}{\partial \lambda_1}$$
(9*a*)

$$\frac{\partial H}{\partial \lambda_2} = -\frac{1}{\lambda_1 f_1 f_2} \frac{\partial F}{\partial \lambda_2} \tag{9b}$$

$$\frac{\partial H}{\partial p_{\lambda_1}} = -\frac{1}{\lambda_2 f_1 f_2} \frac{\partial F}{\partial p_{\lambda_1}} \tag{9c}$$

$$\frac{\partial H}{\partial p_{\lambda_2}} = -\frac{1}{\lambda_1 f_1 f_2} \frac{\partial F}{\partial p_{\lambda_2}}.$$
(9d)

A straightforward integration of (9) leads to the functions

$$F_1(H) = \frac{H_2(\lambda_2, p_{\lambda_2}) - H_1(\lambda_1, p_{\lambda_1})}{\lambda_2 - \lambda_1}$$
(10)

$$F_2(F) = \frac{-\lambda_1 H_2 + \lambda_2 H_1}{\lambda_2 - \lambda_1} \tag{11}$$

where $F_1(H)$ (resp. $F_2(F)$) is a primitive of $f_1(H)$ (resp. $f_2(F)^{-1}$) and $H_i(\lambda_i, p_{\lambda_i})$ (i = 1, 2) are arbitrary functions.

From the inverse function theorem, we obtain

$$H = h\left(\frac{H_2(\lambda_2, p_{\lambda_2}) - H_1(\lambda_1, p_{\lambda_1})}{\lambda_2 - \lambda_1}\right)$$
(12)

$$F = g\left(\frac{-\lambda_1 H_2(\lambda_2, p_{\lambda_2}) + \lambda_2 H_1(\lambda_1, p_{\lambda_1})}{\lambda_2 - \lambda_1}\right)$$
(13)

where h (resp. g) is the inverse function of F_1 (resp. F_2).

Moreover, a straightforward calculation leads to

$$LV(H) = \frac{\mathrm{d}h}{\mathrm{d}\tilde{H}}LV(\tilde{H}) \tag{14}$$

where we denote

$$\tilde{H} = \frac{H_2(\lambda_2, p_{\lambda_2}) - H_1(\lambda_1, p_{\lambda_1})}{\lambda_2 - \lambda_1}.$$

From remark 2, $LV(\tilde{H}) = 0$. Then $LV(H) = 0$.

It is natural to study the converse of proposition 3. The following proposition provides a result of this study.

Proposition 4. Let $H_1(q_1, p_1)$, $G_1(q_1, p_1)$, $H_2(q_2, p_2)$, $G_2(q_2, p_2)$ be arbitrary functions belonging to $C^{\infty}(\mathbb{R}^2, \mathbb{R})$. Denote

$$H = h\left(\frac{H_2 - H_1}{G_2 - G_1}\right) \tag{15}$$

 $h \in C^{\infty}(\mathbb{R}, \mathbb{R})$ and

$$C_0 = \frac{\partial}{\partial q_1} \wedge \frac{\partial}{\partial p_1} + \frac{\partial}{\partial q_2} \wedge \frac{\partial}{\partial p_2}$$
(16)

the canonical Poisson structure in \mathbb{R}^4 . Then the Hamiltonian system (\mathbb{R}, C_0, H) admits a QBHS defined by

$$C_0(., H) = \frac{1}{\rho}C(., F)$$

where

(i)
$$F = g\left(\frac{-q_1H_2 + q_2H_1}{G_2 - G_1}\right)$$
 (17)

with $g \in C^{\infty}(\mathbb{R}, \mathbb{R})$

(ii)
$$\rho = -G_1 G_2 f_1(H) f_2(F)$$
 (18)

with

$$f_1(H) = \frac{1}{\frac{\partial h}{\partial H'} \circ h^{-1}}(H)$$

and

$$f_2(F) = \left(\frac{\partial g}{\partial F'} \circ g^{-1}\right)(F)$$

we denote

$$H' = \frac{H_2 - H_1}{G_2 - G_1}$$

and

$$F' = \frac{-q_1 H_2 + q_2 H_1}{G_2 - G_1}$$
(iii)
$$C = G_1 \frac{\partial}{\partial q_1} \wedge \frac{\partial}{\partial p_1} + G_2 \frac{\partial}{\partial q_2} \wedge \frac{\partial}{\partial p_2}.$$
(19)

Proof. Let H = h(H'). Taking F = g(F'), a straightforward calculation leads to

$$\frac{\partial H}{\partial q_1} = -\frac{1}{G_2} \frac{\frac{\partial h}{\partial H'}}{\frac{\partial g}{\partial F'}} \frac{\partial F}{\partial q_1}.$$
(20)

Applying the inverse function theorem to the expressions (5) of H and (6) of F, (20) becomes

$$\frac{\partial H}{\partial q_1} = -\frac{1}{G_2} \frac{\left(\frac{\partial h}{\partial H'} \circ h^{-1}\right)(H)}{\left(\frac{\partial g}{\partial F'} \circ g^{-1}\right)(F)} \frac{\partial F}{\partial q_1}.$$
(21)

Setting, $f_1(H) = \frac{1}{(\frac{\partial h}{\partial H'} \circ h^{-1})}(H)$ and $f_2(F) = (\frac{\partial g}{\partial F'} \circ g^{-1})(F)$, we obtain

$$\frac{\partial H}{\partial q_1} = -\frac{1}{G_2 f_1(H) f_2(F)} \frac{\partial F}{\partial q_1}.$$
(22)

We verify also that

$$\frac{\partial H}{\partial q_2} = -\frac{1}{G_1 f_1(H) f_2(F)} \frac{\partial F}{\partial q_2}$$
(23)

$$\frac{\partial H}{\partial p_1} = -\frac{1}{G_2 f_1(H) f_2(F)} \frac{\partial F}{\partial p_1}$$
(24)

$$\frac{\partial H}{\partial p_2} = -\frac{1}{G_1 f_1(H) f_2(F)} \frac{\partial F}{\partial p_2}.$$
(25)

According to the expressions (16) of C_0 and (19) of C, (21), (23)–(25) can be written:

$$C_0(.,H) = -\frac{1}{G_1 G_2 f_1(H) f_2(F)} C(.,F).$$

We now present an example illustrating the results achieved in proposition 3.

Example: Kolossof Hamiltonian [10]. It has been permitted to linearize the well known Kovalevskaya top.

We consider $M = \mathbb{R}^4$ with canonical coordinates (x, y, p_x, p_y) , C_0 is the standard Poisson structure, and H, the square of Kolossof Hamiltonian given by

$$H = \left\{ \frac{1}{2} p_x^2 + \frac{1}{2} p_y^2 + \frac{x^2 + y^2 - kx + 1}{\sqrt{x^2 + y^2}} \right\}^{\frac{1}{2}} \qquad k \in \mathbb{R}^*.$$
(26)

7118 J Rabenivo

A direct calculation leads to the equation

$$C_0(.,H) = \frac{1}{-4k^2(x-k)^2 H\sqrt{F}} C(.,F)$$
(27)

where C is a second Poisson structure compatible with C_0 , given by the following matrix

$$C = \begin{pmatrix} 0 & 0 & (x-k)^2 & (x-k)y \\ 0 & 0 & (x-k)y & y^2 + k^2 \\ -(x-k)^2 & -(x-k)y & 0 & (x-k)p_y - yp_x \\ -(x-k)y & -(y^2+k^2) & -(x-k)p_y + yp_x & 0 \end{pmatrix}$$
(28)

and

$$F = \left\{ -\frac{1}{2}(k^2 + y^2)p_x^2 + (x - k)yp_xp_y - \frac{1}{2}p_y^2(x - k)^2 - \frac{k(x - k)(kx - 1)}{\sqrt{x^2 + y^2}} \right\}^2.$$
 (29)

So, (\mathbb{R}^4, C_0, H) admits a QBHS with an integrating factor separable $\rho = -4k^2(x - k)^2 H \sqrt{F}$.

The eigenvalues λ_1 and λ_2 of the Nijenhuis operator $J = CC_0^{-1}$ satisfy

$$\lambda_1 \lambda_2 = k^2 (x - k)^2 \tag{30a}$$

$$\lambda_1 + \lambda_2 = (x - k)^2 + y^2 + k^2$$
(30b)

and are functionally independent. So, we can find Nijenhuis coordinates $(\lambda_1, \lambda_2, p_{\lambda_1}, p_{\lambda_2})$. The second part of the canonical transformation is given by

$$p_x = -2k\sqrt{\lambda_1\lambda_2} \left(\frac{p_{\lambda_1} - p_{\lambda_2}}{\lambda_1 - \lambda_2}\right) + 2\frac{\sqrt{\lambda_1\lambda_2}}{k} \left(\frac{\lambda_1 p_{\lambda_1} - \lambda_2 p_{\lambda_2}}{\lambda_1 - \lambda_2}\right)$$
(31*a*)

$$p_{y} = 2 \frac{\lambda_{1} p_{\lambda_{1}} - \lambda_{2} p_{\lambda_{2}}}{\lambda_{1} - \lambda_{2}} \sqrt{\lambda_{1} + \lambda_{2} - \frac{\lambda_{1} \lambda_{2}}{k^{2}} - k^{2}}.$$
(31*b*)

The relations (30a, b) and (31a, b) allow us to write H and F explicitly in the Nijenhuis coordinates:

$$H = \left\{ \frac{1}{\lambda_2 - \lambda_1} ((2\lambda_2^2 - 2k^2\lambda_2)p_{\lambda_2}^2 + \lambda_2^{\frac{3}{2}} + (1 - k^2)\lambda_2^{\frac{1}{2}} - ((2\lambda_1^2 - 2k^2\lambda_1)p_{\lambda_1}^2 + \lambda_1^{\frac{3}{2}} + (1 - k^2)\lambda_1^{\frac{1}{2}})) \right\}^{\frac{1}{2}}$$

$$F = \left\{ \frac{1}{\lambda_2 - \lambda_1} (-\lambda_1 ((2\lambda_2^2 - 2k^2\lambda_2)p_{\lambda_2}^2 + \lambda_2^{\frac{3}{2}} + (1 - k^2)\lambda_2^{\frac{1}{2}}) + \lambda_2 ((2\lambda_1^2 - 2k^2\lambda_1)p_{\lambda_1}^2 + \lambda_1^{\frac{3}{2}} + (1 - k^2)\lambda_1^{\frac{1}{2}})) \right\}^{\frac{1}{2}}.$$
(32)

We see that

$$H = h\left(\frac{H_2(\lambda_2, p_{\lambda_2}) - H_1(\lambda_1, p_{\lambda_1})}{\lambda_2 - \lambda_1}\right)$$
$$F = g\left(\frac{-\lambda_1 H_2(\lambda_2, p_{\lambda_2}) + \lambda_2 H_1(\lambda_1, p_{\lambda_1})}{\lambda_2 - \lambda_1}\right)$$

which imply Hamilton-Jacobi separability.

4. Some ideas for the general case

For the general case we must also obtain some relations between LV(H), LV(F) and LV(f). The next proposition contains some indications for such a study in the future.

Proposition 5. Let $(M, C_0, H, C, F, \rho = -\lambda_1 \lambda_2 f(H, F))$ be a QBHS. In terms of Nijenhuis coordinates, the following relations hold

$$LV(H) = -\frac{1}{\lambda_1^2 \lambda_2 f^3} LV(F)$$
(34)

$$LV(f) = \left(\frac{\partial f}{\partial H} - \lambda_2 f \frac{\partial f}{\partial F}\right) \left(\frac{\partial f}{\partial H} - \lambda_1 f \frac{\partial f}{\partial F}\right)^2 LV(H)$$
(35)

(LV indicates the Levi-Civita operator (4)).

Proof. The proof is based on a direct calculation as follows.

(i) We get, in Nijenhuis coordinates, the value of the Levi-Civita operator applied to *H*: LV(H); then we inject in LV(H) the equations provided by the relation definition (1) of the QBHS (with $\rho = -\lambda_1 \lambda_2 f$). By a grouping together of suitable terms, we obtain (34).

(ii) We search to identify LV(H) or LV(F) in LV(f). Then using (34), we obtain (35).

Remark 3. We observe that

$$\left(\frac{\partial f}{\partial H} - \lambda_i f \frac{\partial f}{\partial F}\right) = \frac{\frac{\partial H}{\partial \lambda_j}}{\frac{\partial f}{\partial \lambda_i}}$$

i, j = 1, 2 and $i \neq j$. So they do not vanish as $\frac{\partial H}{\partial \lambda_i} \neq 0$ and $\frac{\partial f}{\partial \lambda_i} \neq 0$ for i = 1, 2 (conditions always assumed for the Levi-Civita operator LV). Therefore we conclude that the study of the separability of the Hamilton–Jacobi equation associated with the Hamiltonian H can be subordinated to the value of LV(f) one.

Acknowledgment

The author would like to thank Robert Brouzet for his suggestions and remarks on the material presented in this paper.

References

- [1] Arnol'd V I (ed) 1976 Méthodes Mathématiques de la Mécanique Classique (Moscow: MIR)
- [2] Arnol'd V I (ed) 1988 Dynamical Systems vol III (Berlin: Springer)
- [3] Arnol'd V I and Novikov S P (ed) 1990 Dynamical Systems vol IV (Berlin: Springer)
- [4] Brouzet R 1990 Systèmes bihamiltoniens et complète intégrabilité en dimension 4 C. R. Acad. Sci. 311 895-8
- [5] Brouzet R 1991 Géométrie des systèmes bihamiltoniens en dimension 4 Thèse l'Université Montpellier 2
- [6] Brouzet R 1993 About the existence of recursion operators for completely integrable Hamiltonian systems near a Liouville torus J. Math. Phys. 34 1309–13
- [7] Brouzet R, Caboz R, Rabenivo J and Ravoson V 1996 Two degrees of freedom quasi-bi-Hamiltonian systems J. Phys. A: Math. Gen. 29 2069–76
- [8] Fernandes R L 1994 Completely integrable bihamiltonian systems J. Dynam. Diff. Eqns 6 53-69
- [9] Huaux A 1976 Sur la séparation des variables dans l'équation aux dérivées partielles de Hamilton–Jacobi Ann. Mat. Pura Appli. CVIII 251–82
- [10] Kolossoff G 1903 Zur rotation eines korpers im kowalewski'schen falle Math. Ann. 56 265-72

7120 J Rabenivo

- [11] Kosmann-Schwarzbach Y and Magri F 1996 Lax–Nijenhuis operators for integrable systems J. Math. Phys. 37 6173–97
- [12] Magri F 1978 A simple model of the integrable Hamiltonian equation J. Math. Phys. 19 1156-62
- [13] Magri F and Morosi C 1984 A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson–Nijenhuis manifolds Publ. Dep. Math. Univ. Milan
- [14] Rabenivo J 1995 Structure quasi-bihamiltonienne de Jacobi Poisson-conforme *Thèse* l'Université de Pau et des Pays de l'Adour
- [15] Ravoson V 1992 (r, s)-structure bihamiltonienne, séparabilité, paire de Lax et intégr-bilité Thèse l'Université de Pau et des Pays de l'Adour
- [16] Smirnov R G 1997 Magri-Morosi-Gel'fand-Dorfman's bi-Hamiltonian constructions in the action-angle variables J. Math. Phys. 38 6444-54