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Non-Pfaffian quasi-bi-Hamiltonian systems with two
degrees of freedom
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Abstract. In the case of two degrees of freedom, a (non-Pfaffian) quasi-bi-Hamiltonian system
with a separable integrating factor is presented (in terms of Nijenhuis coordinates) and its
separability is proved. Indications are given in the case of a general integrating factor.

1. Introduction

Magri in 1977 [12] introduced a very interesting notion which explains the complete
integrability [1–3] of certain Hamiltonian systems. Indeed, when a Hamiltonian vector
field is also Hamiltonian for a second Poisson structure compatible with the previous one
it is completely integrable under suitable conditions [12, 13]. Many classical dynamical
systems in both finite and infinite dimensions are known to have such bi-Hamiltonian
formulations [12, 13], and recent papers [11, 16] provide methods to construct a second
compatible structure in certain examples. Nevertheless, it remains very difficult to exhibit
[15] a bi-Hamiltonian structure for a given vector field. Moreover, the existence of such
a structure on a whole neighbourhood of a Liouville torus, imposes for a large class of
Hamiltonians very drastic conditions [4–6, 8].

For these reasons, we recently introduced a weaker structure calledquasi-bi-Hamiltonian
structure(QBHS) [7, 14]. We only ask for a Hamiltonian vector to be, after multiplication by
some function (called theintegrating factor) Hamiltonian for a compatible second Poisson
bracket. This kind of structure is easier to obtain in explicit examples [15], and has in
addition interesting properties concerning integrability [7, 14]. Moreover, the above strong
conditions are relaxed [7, 14].

In this paper we study a QBHS with two degrees of freedom with a special type of
integrating factor. Precisely, if a vector fieldX is Hamiltonian of HamiltonianH for a
first structure, and ifρX is Hamiltonian of HamiltonianF for a compatible second one, we
know thatρ = −λ1λ2f (H, F ) [7, 14], whereλ1, λ2 denote eigenvalues of the Nijenhuis
(1, 1)-tensor field defined by the two compatible Poisson brackets.

Here, we are interested in the special caseρ = −λ1λ2f1(H)f2(F ). We first prove that
canonical coordinates associated to these eigenvalues (calledNijenhuis coordinates) also
allow us to separate the Hamilton–Jacobi equation as in the Pfaffian case. Next, we give
some results about the so-called Levi-Civita operator [3, 9] for a general integrating factor.
Finally, we attempt to touch on the separability of the Hamilton–Jacobi equation for general
integrating factors.
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2. Reminder about QBHS

Definition 1 ([7, 14]). A Hamiltonian system(M,C0, H) whereM is a manifold of an even
dimension endowed with a non-degenerate Poisson structureC0 andH ∈ C∞(M,R), is
said to have a QBHS if it exists such that:

(i) a Poisson structureC compatible withC0, i.e.C + C0 is also a Poisson structure,
(ii) a functionF ∈ C∞(M,R), and
(iii) a non-vanishing functionρ ∈ C∞(M,R) (called theintegrating factor) so that the

relation:

C0(., H) = 1

ρ
C(., F ) (1)

is verified.
The 6-tuple(M,C0, H,C, F, ρ) is called aquasi-bi-Hamiltonian system. We remark

that C0(F,H) = 1
ρ
C(F, F ) = 0; so that,F is a first integral of the Hamiltonian field

C0(., H).

Definition 2. We say that a quasi-bi-Hamiltonian system(M,C0, H,C, F, ρ) is real
decomposable[5] if the operatorJ = CC0

−1 (connecting the two compatible Poisson
structuresC andC0) has the maximum number (= 1

2 dim M) of distinct real eigenvalues
at each point (so thatJ is diagonalizable).

In the following, we assume dimM = 4.

Proposition 1 ([7, 14]).Let (M,C0, H,C, F, ρ) be a QBHS. IfH andF are functionally
independent, thenρ

2

detJ is a functionf (H, F ) of H andF .

Remark 1.
(i) Note that the converse of proposition 1 is false (see [14] for the proof). In [7, 14]

we have defined and studied a particular case (called Pfaffian QBHS) whereρ2

detJ = 1, i.e.
f (H, F ) = 1, andH and F are not necessarily functionally independent. So we have
ρ = −λ1λ2, whereλi (i = 1, 2) are eigenvalues ofJ .

(ii) Since C0 and C are compatible, the eigenvaluesλi (i = 1, 2) of the operator
J = CC0

−1 are in involution with respect to theC0 and C [12, 13]. We suppose that
they are real, distinct (i.e.J is real decomposable) and functionally independent. Hence,
we can complete(λ1, λ2) [7] by functions(pλ1, pλ2) so that(λ1, λ2, pλ1, pλ2) are canonical
coordinates. They are calledNijenhuis coordinates[7].

We also recall below an important result concerning the study of a Pfaffian QBHS with
respect to these canonical coordinates.

Proposition 2 ([7, 14]).Let (M,C0, H,C, F,−λ1λ2) be a Pfaffian QBHS. In the Nijenhuis
coordinates, the HamiltonianH and the second HamiltonianF take the following forms

H = H1(λ1, pλ1)−H2(λ2, pλ2)

λ1− λ2
(2)

F = −λ2H1(λ1, pλ1)+ λ1H2(λ2, pλ2)

λ1− λ2
. (3)

Definition 3. We say that the pair(H, F ) of functions satisfying(2) and (3) presents a
Pfaffian Gantmacher form.
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Remark 2.The condition(2) implies that the Nijenhuis coordinates separate Hamilton–
Jacobi equation associated with the system. In fact, the Levi-Civita operator [3, 9] denoted
by LV applied toH vanishes, where

LV = ∂

∂λ1

∂

∂λ2

∂2

∂pλ1∂pλ2

− ∂

∂pλ1

∂

∂λ2

∂2

∂pλ2∂λ1
− ∂

∂pλ2

∂

∂λ1

∂2

∂pλ1∂λ2
+ ∂

∂pλ1

∂

∂pλ2

∂2

∂λ1∂λ2

(4)

provided that ∂H
∂pλi

∂H
∂λi
6= 0 for i = 1, 2.

In the following section, we study a QBHS(M,C0, H,C, F, ρ) with a general
integrating factor. At first, we take interest in the case where the integrating factor
ρ = −λ1λ2f (H, F ) can be writtenρ = −λ1λ2f1(H)f2(F ), wheref1, f2 are two non-
vanishing functions inC∞(M,R), called hereseparable form. After that, we give some
results about the general case (without restriction on the functionf (H, F )).

3. The QBHS with a separable integrating factorρ = −λ1λ2f1(H)f2(F )

Results concerning this case are stated in the following proposition.

Proposition 3.Let (M,C0, H,C, F, ρ) be a QBHS. If the integrating factor has the
separable formρ = −λ1λ2f1(H)f2(F ), then in Nijenhuis coordinates(λ1, λ2, pλ1, pλ2),
the functionsH andF take the following forms:

H = h
(
H2(λ2, pλ2)−H1(λ1, pλ1)

λ2− λ1

)
(5)

F = g
(−λ1H2(λ2, pλ2)+ λ2H1(λ1, pλ1)

λ2− λ1

)
(6)

whereh andg are functions deduced fromfi .
Moreover, the Hamilton–Jacobi equation associated with the system is separable in these

coordinates.

Proof. First, we recall [7, 14] that in the Nijenhuis coordinates(λ1, λ2, pλ1, pλ2), the two
Poisson structuresC0 andC can be written respectively

C0 = ∂

∂λ1
∧ ∂

∂pλ1

+ ∂

∂λ2
∧ ∂

∂pλ2

(7)

C = λ1
∂

∂λ1
∧ ∂

∂pλ1

+ λ2
∂

∂λ2
∧ ∂

∂pλ2

. (8)

Therefore, relation(1) defining a QBHS with integrating factorρ = −λ1λ2f1(H)f2(F ),
can be defined explicitly by equations:

∂H

∂λ1
= − 1

λ2f1f2

∂F

∂λ1
(9a)

∂H

∂λ2
= − 1

λ1f1f2

∂F

∂λ2
(9b)

∂H

∂pλ1

= − 1

λ2f1f2

∂F

∂pλ1

(9c)

∂H

∂pλ2

= − 1

λ1f1f2

∂F

∂pλ2

. (9d)
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A straightforward integration of(9) leads to the functions

F1(H) = H2(λ2, pλ2)−H1(λ1, pλ1)

λ2− λ1
(10)

F2(F ) = −λ1H2+ λ2H1

λ2− λ1
(11)

whereF1(H) (resp.F2(F )) is a primitive off1(H) (resp.f2(F )
−1) andHi(λi, pλi ) (i = 1, 2)

are arbitrary functions.
From the inverse function theorem, we obtain

H = h
(
H2(λ2, pλ2)−H1(λ1, pλ1)

λ2− λ1

)
(12)

F = g
(−λ1H2(λ2, pλ2)+ λ2H1(λ1, pλ1)

λ2− λ1

)
(13)

whereh (resp.g) is the inverse function ofF1 (resp.F2).
Moreover, a straightforward calculation leads to

LV (H) = dh

dH̃
LV (H̃ ) (14)

where we denote

H̃ = H2(λ2, pλ2)−H1(λ1, pλ1)

λ2− λ1
.

From remark 2,LV (H̃ ) = 0. ThenLV (H) = 0. �

It is natural to study the converse of proposition 3. The following proposition provides
a result of this study.

Proposition 4.Let H1(q1, p1), G1(q1, p1), H2(q2, p2), G2(q2, p2) be arbitrary functions
belonging toC∞(R2,R). Denote

H = h
(
H2−H1

G2−G1

)
(15)

h ∈ C∞(R,R) and

C0 = ∂

∂q1
∧ ∂

∂p1
+ ∂

∂q2
∧ ∂

∂p2
(16)

the canonical Poisson structure inR4. Then the Hamiltonian system(R, C0, H) admits a
QBHS defined by

C0(., H) = 1

ρ
C(., F )

where

(i) F = g
(−q1H2+ q2H1

G2−G1

)
(17)

with g ∈ C∞(R,R)
(ii) ρ = −G1G2f1(H)f2(F ) (18)

with

f1(H) = 1
∂h
∂H ′ ◦ h−1

(H)
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and

f2(F ) =
(
∂g

∂F ′
◦ g−1

)
(F )

we denote

H ′ = H2−H1

G2−G1

and

F ′ = −q1H2+ q2H1

G2−G1

(iii) C = G1
∂

∂q1
∧ ∂

∂p1
+G2

∂

∂q2
∧ ∂

∂p2
.

(19)

Proof. Let H = h(H ′). TakingF = g(F ′), a straightforward calculation leads to

∂H

∂q1
= − 1

G2

∂h
∂H ′
∂g

∂F ′

∂F

∂q1
. (20)

Applying the inverse function theorem to the expressions(5) of H and (6) of F , (20)
becomes

∂H

∂q1
= − 1

G2

( ∂h
∂H ′ ◦ h−1)(H)

(
∂g

∂F ′ ◦ g−1)(F )

∂F

∂q1
. (21)

Setting,f1(H) = 1
( ∂h
∂H ′ ◦h−1)

(H)) andf2(F ) = ( ∂g∂F ′ ◦ g−1)(F ), we obtain

∂H

∂q1
= − 1

G2f1(H)f2(F )

∂F

∂q1
. (22)

We verify also that

∂H

∂q2
= − 1

G1f1(H)f2(F )

∂F

∂q2
(23)

∂H

∂p1
= − 1

G2f1(H)f2(F )

∂F

∂p1
(24)

∂H

∂p2
= − 1

G1f1(H)f2(F )

∂F

∂p2
. (25)

According to the expressions(16) of C0 and(19) of C, (21), (23)–(25) can be written:

C0(., H) = − 1

G1G2f1(H)f2(F )
C(., F ).

�

We now present an example illustrating the results achieved in proposition 3.

Example: Kolossof Hamiltonian [10].It has been permitted to linearize the well known
Kovalevskaya top.

We considerM = R4 with canonical coordinates(x, y, px, py), C0 is the standard
Poisson structure, andH , the square of Kolossof Hamiltonian given by

H =
{

1

2
p2
x +

1

2
p2
y +

x2+ y2− kx + 1√
x2+ y2

} 1
2

k ∈ R∗. (26)
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A direct calculation leads to the equation

C0(., H) = 1

−4k2(x − k)2H√F C(., F ) (27)

whereC is a second Poisson structure compatible withC0, given by the following matrix

C =


0 0 (x − k)2 (x − k)y
0 0 (x − k)y y2+ k2

−(x − k)2 −(x − k)y 0 (x − k)py − ypx
−(x − k)y −(y2+ k2) −(x − k)py + ypx 0

 (28)

and

F =
{
−1

2
(k2+ y2)p2

x + (x − k)ypxpy −
1

2
p2
y(x − k)2−

k(x − k)(kx − 1)√
x2+ y2

}2

. (29)

So, (R4, C0, H) admits a QBHS with an integrating factor separableρ = −4k2(x −
k)2H
√
F .

The eigenvaluesλ1 andλ2 of the Nijenhuis operatorJ = CC−1
0 satisfy

λ1λ2 = k2(x − k)2 (30a)

λ1+ λ2 = (x − k)2+ y2+ k2 (30b)

and are functionally independent. So, we can find Nijenhuis coordinates(λ1, λ2, pλ1, pλ2).
The second part of the canonical transformation is given by

px = −2k
√
λ1λ2

(
pλ1 − pλ2

λ1− λ2

)
+ 2

√
λ1λ2

k

(
λ1pλ1 − λ2pλ2

λ1− λ2

)
(31a)

py = 2
λ1pλ1 − λ2pλ2

λ1− λ2

√
λ1+ λ2− λ1λ2

k2
− k2. (31b)

The relations(30a, b) and (31a, b) allow us to writeH andF explicitly in the Nijenhuis
coordinates:

H =
{

1

λ2− λ1
((2λ2

2− 2k2λ2)p
2
λ2
+ λ

3
2
2 + (1− k2)λ

1
2
2

−((2λ2
1− 2k2λ1)p

2
λ1
+ λ

3
2
1 + (1− k2)λ

1
2
1 ))

} 1
2

(32)

F =
{

1

λ2− λ1
(−λ1((2λ

2
2− 2k2λ2)p

2
λ2
+ λ

3
2
2 + (1− k2)λ

1
2
2 )

+λ2((2λ
2
1− 2k2λ1)p

2
λ1
+ λ

3
2
1 + (1− k2)λ

1
2
1 ))

}2

. (33)

We see that

H = h
(
H2(λ2, pλ2)−H1(λ1, pλ1)

λ2− λ1

)
F = g

(−λ1H2(λ2, pλ2)+ λ2H1(λ1, pλ1)

λ2− λ1

)
which imply Hamilton–Jacobi separability.
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4. Some ideas for the general case

For the general case we must also obtain some relations betweenLV (H), LV (F) and
LV (f ). The next proposition contains some indications for such a study in the future.

Proposition 5.Let (M,C0, H,C, F, ρ = −λ1λ2f (H, F )) be a QBHS. In terms of Nijenhuis
coordinates, the following relations hold

LV (H) = − 1

λ2
1λ2f 3

LV (F) (34)

LV (f ) =
(
∂f

∂H
− λ2f

∂f

∂F

)(
∂f

∂H
− λ1f

∂f

∂F

)2

LV (H) (35)

(LV indicates the Levi-Civita operator(4)).

Proof. The proof is based on a direct calculation as follows.
(i) We get, in Nijenhuis coordinates, the value of the Levi-Civita operator applied toH :

LV (H); then we inject inLV (H) the equations provided by the relation definition(1) of
the QBHS (withρ = −λ1λ2f ). By a grouping together of suitable terms, we obtain(34).

(ii) We search to identifyLV (H) or LV (F) in LV (f ). Then using(34), we obtain
(35). �

Remark 3.We observe that(
∂f

∂H
− λif ∂f

∂F

)
=

∂H
∂λj

∂f

∂λj

i, j = 1, 2 andi 6= j . So they do not vanish as∂H
∂λi
6= 0 and ∂f

∂λi
6= 0 for i = 1, 2 (conditions

always assumed for the Levi-Civita operatorLV ). Therefore we conclude that the study of
the separability of the Hamilton–Jacobi equation associated with the HamiltonianH can be
subordinated to the value ofLV (f ) one.
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