Non-Pfaffian quasi-bi-Hamiltonian systems with two degrees of freedom

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 317113
(http://iopscience.iop.org/0305-4470/31/34/014)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.102
The article was downloaded on 02/06/2010 at 07:10

Please note that terms and conditions apply.

Non-Pfaffian quasi-bi-Hamiltonian systems with two degrees of freedom

Joseph Rabenivo \dagger
LPA, Université de Pau et des Pays de l'Adour, Avenue de l'Université, F-64000 Pau, France

Received 9 December 1997, in final form 30 June 1998

Abstract

In the case of two degrees of freedom, a (non-Pfaffian) quasi-bi-Hamiltonian system with a separable integrating factor is presented (in terms of Nijenhuis coordinates) and its separability is proved. Indications are given in the case of a general integrating factor.

1. Introduction

Magri in 1977 [12] introduced a very interesting notion which explains the complete integrability [1-3] of certain Hamiltonian systems. Indeed, when a Hamiltonian vector field is also Hamiltonian for a second Poisson structure compatible with the previous one it is completely integrable under suitable conditions [12,13]. Many classical dynamical systems in both finite and infinite dimensions are known to have such bi-Hamiltonian formulations [12,13], and recent papers [11,16] provide methods to construct a second compatible structure in certain examples. Nevertheless, it remains very difficult to exhibit [15] a bi-Hamiltonian structure for a given vector field. Moreover, the existence of such a structure on a whole neighbourhood of a Liouville torus, imposes for a large class of Hamiltonians very drastic conditions [4-6, 8].

For these reasons, we recently introduced a weaker structure called quasi-bi-Hamiltonian structure (QBHS) [7, 14]. We only ask for a Hamiltonian vector to be, after multiplication by some function (called the integrating factor) Hamiltonian for a compatible second Poisson bracket. This kind of structure is easier to obtain in explicit examples [15], and has in addition interesting properties concerning integrability [7,14]. Moreover, the above strong conditions are relaxed [7,14].

In this paper we study a QBHS with two degrees of freedom with a special type of integrating factor. Precisely, if a vector field X is Hamiltonian of Hamiltonian H for a first structure, and if ρX is Hamiltonian of Hamiltonian F for a compatible second one, we know that $\rho=-\lambda_{1} \lambda_{2} f(H, F)$ [7,14], where λ_{1}, λ_{2} denote eigenvalues of the Nijenhuis $(1,1)$-tensor field defined by the two compatible Poisson brackets.

Here, we are interested in the special case $\rho=-\lambda_{1} \lambda_{2} f_{1}(H) f_{2}(F)$. We first prove that canonical coordinates associated to these eigenvalues (called Nijenhuis coordinates) also allow us to separate the Hamilton-Jacobi equation as in the Pfaffian case. Next, we give some results about the so-called Levi-Civita operator [3, 9] for a general integrating factor. Finally, we attempt to touch on the separability of the Hamilton-Jacobi equation for general integrating factors.

[^0]
2. Reminder about QBHS

Definition 1 ($[7,14])$. A Hamiltonian system $\left(M, C_{0}, H\right)$ where M is a manifold of an even dimension endowed with a non-degenerate Poisson structure C_{0} and $H \in C^{\infty}(M, \mathbb{R})$, is said to have a QBHS if it exists such that:
(i) a Poisson structure C compatible with C_{0}, i.e. $C+C_{0}$ is also a Poisson structure,
(ii) a function $F \in C^{\infty}(M, \mathbb{R})$, and
(iii) a non-vanishing function $\rho \in C^{\infty}(M, \mathbb{R})$ (called the integrating factor) so that the relation:

$$
\begin{equation*}
C_{0}(., H)=\frac{1}{\rho} C(., F) \tag{1}
\end{equation*}
$$

is verified.
The 6-tuple $\left(M, C_{0}, H, C, F, \rho\right)$ is called a quasi-bi-Hamiltonian system. We remark that $C_{0}(F, H)=\frac{1}{\rho} C(F, F)=0$; so that, F is a first integral of the Hamiltonian field $C_{0}(., H)$.

Definition 2. We say that a quasi-bi-Hamiltonian system $\left(M, C_{0}, H, C, F, \rho\right)$ is real decomposable [5] if the operator $J=C C_{0}{ }^{-1}$ (connecting the two compatible Poisson structures C and C_{0}) has the maximum number $\left(=\frac{1}{2} \operatorname{dim} M\right)$ of distinct real eigenvalues at each point (so that J is diagonalizable).

In the following, we assume $\operatorname{dim} M=4$.
Proposition 1 ([7,14]). Let $\left(M, C_{0}, H, C, F, \rho\right)$ be a QBHS. If H and F are functionally independent, then $\frac{\rho^{2}}{\operatorname{det} J}$ is a function $f(H, F)$ of H and F.

Remark 1.

(i) Note that the converse of proposition 1 is false (see [14] for the proof). In [7, 14] we have defined and studied a particular case (called Pfaffian QBHS) where $\frac{\rho^{2}}{\operatorname{det} J}=1$, i.e. $f(H, F)=1$, and H and F are not necessarily functionally independent. So we have $\rho=-\lambda_{1} \lambda_{2}$, where $\lambda_{i}(i=1,2)$ are eigenvalues of J.
(ii) Since C_{0} and C are compatible, the eigenvalues $\lambda_{i}(i=1,2)$ of the operator $J=C C_{0}{ }^{-1}$ are in involution with respect to the C_{0} and $C[12,13]$. We suppose that they are real, distinct (i.e. J is real decomposable) and functionally independent. Hence, we can complete $\left(\lambda_{1}, \lambda_{2}\right)$ [7] by functions $\left(p_{\lambda_{1}}, p_{\lambda_{2}}\right)$ so that $\left(\lambda_{1}, \lambda_{2}, p_{\lambda_{1}}, p_{\lambda_{2}}\right)$ are canonical coordinates. They are called Nijenhuis coordinates [7].

We also recall below an important result concerning the study of a Pfaffian QBHS with respect to these canonical coordinates.

Proposition 2 ([7, 14]). Let ($M, C_{0}, H, C, F,-\lambda_{1} \lambda_{2}$) be a Pfaffian QBHS. In the Nijenhuis coordinates, the Hamiltonian H and the second Hamiltonian F take the following forms

$$
\begin{align*}
H & =\frac{H_{1}\left(\lambda_{1}, p_{\lambda_{1}}\right)-H_{2}\left(\lambda_{2}, p_{\lambda_{2}}\right)}{\lambda_{1}-\lambda_{2}} \tag{2}\\
F & =\frac{-\lambda_{2} H_{1}\left(\lambda_{1}, p_{\lambda_{1}}\right)+\lambda_{1} H_{2}\left(\lambda_{2}, p_{\lambda_{2}}\right)}{\lambda_{1}-\lambda_{2}} \tag{3}
\end{align*}
$$

Definition 3. We say that the pair (H, F) of functions satisfying (2) and (3) presents a Pfaffian Gantmacher form.

Remark 2. The condition (2) implies that the Nijenhuis coordinates separate HamiltonJacobi equation associated with the system. In fact, the Levi-Civita operator [3, 9] denoted by $L V$ applied to H vanishes, where

$$
\begin{equation*}
L V=\frac{\partial}{\partial \lambda_{1}} \frac{\partial}{\partial \lambda_{2}} \frac{\partial^{2}}{\partial p_{\lambda_{1}} \partial p_{\lambda_{2}}}-\frac{\partial}{\partial p_{\lambda_{1}}} \frac{\partial}{\partial \lambda_{2}} \frac{\partial^{2}}{\partial p_{\lambda_{2}} \partial \lambda_{1}}-\frac{\partial}{\partial p_{\lambda_{2}}} \frac{\partial}{\partial \lambda_{1}} \frac{\partial^{2}}{\partial p_{\lambda_{1}} \partial \lambda_{2}}+\frac{\partial}{\partial p_{\lambda_{1}}} \frac{\partial}{\partial p_{\lambda_{2}}} \frac{\partial^{2}}{\partial \lambda_{1} \partial \lambda_{2}} \tag{4}
\end{equation*}
$$

provided that $\frac{\partial H}{\partial p_{i}} \frac{\partial H}{\partial \lambda_{i}} \neq 0$ for $i=1,2$.
In the following section, we study a QBHS $\left(M, C_{0}, H, C, F, \rho\right)$ with a general integrating factor. At first, we take interest in the case where the integrating factor $\rho=-\lambda_{1} \lambda_{2} f(H, F)$ can be written $\rho=-\lambda_{1} \lambda_{2} f_{1}(H) f_{2}(F)$, where f_{1}, f_{2} are two nonvanishing functions in $C^{\infty}(M, \mathbb{R})$, called here separable form. After that, we give some results about the general case (without restriction on the function $f(H, F)$).

3. The QBHS with a separable integrating factor $\rho=-\lambda_{1} \lambda_{2} f_{1}(H) f_{2}(F)$

Results concerning this case are stated in the following proposition.
Proposition 3. Let (M, C_{0}, H, C, F, ρ) be a QBHS. If the integrating factor has the separable form $\rho=-\lambda_{1} \lambda_{2} f_{1}(H) f_{2}(F)$, then in Nijenhuis coordinates $\left(\lambda_{1}, \lambda_{2}, p_{\lambda_{1}}, p_{\lambda_{2}}\right)$, the functions H and F take the following forms:

$$
\begin{align*}
& H=h\left(\frac{H_{2}\left(\lambda_{2}, p_{\lambda_{2}}\right)-H_{1}\left(\lambda_{1}, p_{\lambda_{1}}\right)}{\lambda_{2}-\lambda_{1}}\right) \tag{5}\\
& F=g\left(\frac{-\lambda_{1} H_{2}\left(\lambda_{2}, p_{\lambda_{2}}\right)+\lambda_{2} H_{1}\left(\lambda_{1}, p_{\lambda_{1}}\right)}{\lambda_{2}-\lambda_{1}}\right) \tag{6}
\end{align*}
$$

where h and g are functions deduced from f_{i}.
Moreover, the Hamilton-Jacobi equation associated with the system is separable in these coordinates.

Proof. First, we recall $[7,14]$ that in the Nijenhuis coordinates $\left(\lambda_{1}, \lambda_{2}, p_{\lambda_{1}}, p_{\lambda_{2}}\right)$, the two Poisson structures C_{0} and C can be written respectively

$$
\begin{align*}
C_{0} & =\frac{\partial}{\partial \lambda_{1}} \wedge \frac{\partial}{\partial p_{\lambda_{1}}}+\frac{\partial}{\partial \lambda_{2}} \wedge \frac{\partial}{\partial p_{\lambda_{2}}} \tag{7}\\
C & =\lambda_{1} \frac{\partial}{\partial \lambda_{1}} \wedge \frac{\partial}{\partial p_{\lambda_{1}}}+\lambda_{2} \frac{\partial}{\partial \lambda_{2}} \wedge \frac{\partial}{\partial p_{\lambda_{2}}} . \tag{8}
\end{align*}
$$

Therefore, relation (1) defining a QBHS with integrating factor $\rho=-\lambda_{1} \lambda_{2} f_{1}(H) f_{2}(F)$, can be defined explicitly by equations:

$$
\begin{align*}
\frac{\partial H}{\partial \lambda_{1}} & =-\frac{1}{\lambda_{2} f_{1} f_{2}} \frac{\partial F}{\partial \lambda_{1}} \tag{9a}\\
\frac{\partial H}{\partial \lambda_{2}} & =-\frac{1}{\lambda_{1} f_{1} f_{2}} \frac{\partial F}{\partial \lambda_{2}} \tag{9b}\\
\frac{\partial H}{\partial p_{\lambda_{1}}} & =-\frac{1}{\lambda_{2} f_{1} f_{2}} \frac{\partial F}{\partial p_{\lambda_{1}}} \tag{9c}\\
\frac{\partial H}{\partial p_{\lambda_{2}}} & =-\frac{1}{\lambda_{1} f_{1} f_{2}} \frac{\partial F}{\partial p_{\lambda_{2}}} \tag{9d}
\end{align*}
$$

A straightforward integration of (9) leads to the functions

$$
\begin{align*}
& F_{1}(H)=\frac{H_{2}\left(\lambda_{2}, p_{\lambda_{2}}\right)-H_{1}\left(\lambda_{1}, p_{\lambda_{1}}\right)}{\lambda_{2}-\lambda_{1}} \tag{10}\\
& F_{2}(F)=\frac{-\lambda_{1} H_{2}+\lambda_{2} H_{1}}{\lambda_{2}-\lambda_{1}} \tag{11}
\end{align*}
$$

where $F_{1}(H)\left(\right.$ resp. $\left.F_{2}(F)\right)$ is a primitive of $f_{1}(H)\left(\right.$ resp. $\left.f_{2}(F)^{-1}\right)$ and $H_{i}\left(\lambda_{i}, p_{\lambda_{i}}\right)(i=1,2)$ are arbitrary functions.

From the inverse function theorem, we obtain

$$
\begin{align*}
& H=h\left(\frac{H_{2}\left(\lambda_{2}, p_{\lambda_{2}}\right)-H_{1}\left(\lambda_{1}, p_{\lambda_{1}}\right)}{\lambda_{2}-\lambda_{1}}\right) \tag{12}\\
& F=g\left(\frac{-\lambda_{1} H_{2}\left(\lambda_{2}, p_{\lambda_{2}}\right)+\lambda_{2} H_{1}\left(\lambda_{1}, p_{\lambda_{1}}\right)}{\lambda_{2}-\lambda_{1}}\right) \tag{13}
\end{align*}
$$

where h (resp. g) is the inverse function of F_{1} (resp. F_{2}).
Moreover, a straightforward calculation leads to

$$
\begin{equation*}
L V(H)=\frac{\mathrm{d} h}{\mathrm{~d} \tilde{H}} L V(\tilde{H}) \tag{14}
\end{equation*}
$$

where we denote

$$
\tilde{H}=\frac{H_{2}\left(\lambda_{2}, p_{\lambda_{2}}\right)-H_{1}\left(\lambda_{1}, p_{\lambda_{1}}\right)}{\lambda_{2}-\lambda_{1}}
$$

From remark 2, $L V(\tilde{H})=0$. Then $L V(H)=0$.
It is natural to study the converse of proposition 3. The following proposition provides a result of this study.
Proposition 4. Let $H_{1}\left(q_{1}, p_{1}\right), G_{1}\left(q_{1}, p_{1}\right), H_{2}\left(q_{2}, p_{2}\right), G_{2}\left(q_{2}, p_{2}\right)$ be arbitrary functions belonging to $C^{\infty}\left(\mathbb{R}^{2}, \mathbb{R}\right)$. Denote

$$
\begin{equation*}
H=h\left(\frac{H_{2}-H_{1}}{G_{2}-G_{1}}\right) \tag{15}
\end{equation*}
$$

$h \in C^{\infty}(\mathbb{R}, \mathbb{R})$ and

$$
\begin{equation*}
C_{0}=\frac{\partial}{\partial q_{1}} \wedge \frac{\partial}{\partial p_{1}}+\frac{\partial}{\partial q_{2}} \wedge \frac{\partial}{\partial p_{2}} \tag{16}
\end{equation*}
$$

the canonical Poisson structure in \mathbb{R}^{4}. Then the Hamiltonian system $\left(\mathbb{R}, C_{0}, H\right)$ admits a QBHS defined by

$$
C_{0}(., H)=\frac{1}{\rho} C(., F)
$$

where

$$
\begin{equation*}
\text { (i) } \quad F=g\left(\frac{-q_{1} H_{2}+q_{2} H_{1}}{G_{2}-G_{1}}\right) \tag{17}
\end{equation*}
$$

with $g \in C^{\infty}(\mathbb{R}, \mathbb{R})$

$$
\begin{equation*}
\text { (ii) } \quad \rho=-G_{1} G_{2} f_{1}(H) f_{2}(F) \tag{18}
\end{equation*}
$$

with

$$
f_{1}(H)=\frac{1}{\frac{\partial h}{\partial H^{\prime}} \circ h^{-1}}(H)
$$

and

$$
f_{2}(F)=\left(\frac{\partial g}{\partial F^{\prime}} \circ g^{-1}\right)(F)
$$

we denote

$$
H^{\prime}=\frac{H_{2}-H_{1}}{G_{2}-G_{1}}
$$

and

$$
\begin{align*}
& F^{\prime}=\frac{-q_{1} H_{2}+q_{2} H_{1}}{G_{2}-G_{1}} \\
& \text { (iii) } \quad C=G_{1} \frac{\partial}{\partial q_{1}} \wedge \frac{\partial}{\partial p_{1}}+G_{2} \frac{\partial}{\partial q_{2}} \wedge \frac{\partial}{\partial p_{2}} . \tag{19}
\end{align*}
$$

Proof. Let $H=h\left(H^{\prime}\right)$. Taking $F=g\left(F^{\prime}\right)$, a straightforward calculation leads to

$$
\begin{equation*}
\frac{\partial H}{\partial q_{1}}=-\frac{1}{G_{2}} \frac{\frac{\partial h}{\partial H^{\prime}}}{\frac{\partial g}{\partial F^{\prime}}} \frac{\partial F}{\partial q_{1}} \tag{20}
\end{equation*}
$$

Applying the inverse function theorem to the expressions (5) of H and (6) of F, (20) becomes

$$
\begin{equation*}
\frac{\partial H}{\partial q_{1}}=-\frac{1}{G_{2}} \frac{\left(\frac{\partial h}{\partial H^{\prime}} \circ h^{-1}\right)(H)}{\left(\frac{\partial g}{\partial F^{\prime}} \circ g^{-1}\right)(F)} \frac{\partial F}{\partial q_{1}} \tag{21}
\end{equation*}
$$

Setting, $\left.f_{1}(H)=\frac{1}{\left(\frac{\partial h}{\partial H^{\circ}} h^{-1}\right)}(H)\right)$ and $f_{2}(F)=\left(\frac{\partial g}{\partial F^{\prime}} \circ g^{-1}\right)(F)$, we obtain

$$
\begin{equation*}
\frac{\partial H}{\partial q_{1}}=-\frac{1}{G_{2} f_{1}(H) f_{2}(F)} \frac{\partial F}{\partial q_{1}} \tag{22}
\end{equation*}
$$

We verify also that

$$
\begin{align*}
\frac{\partial H}{\partial q_{2}} & =-\frac{1}{G_{1} f_{1}(H) f_{2}(F)} \frac{\partial F}{\partial q_{2}} \tag{23}\\
\frac{\partial H}{\partial p_{1}} & =-\frac{1}{G_{2} f_{1}(H) f_{2}(F)} \frac{\partial F}{\partial p_{1}} \tag{24}\\
\frac{\partial H}{\partial p_{2}} & =-\frac{1}{G_{1} f_{1}(H) f_{2}(F)} \frac{\partial F}{\partial p_{2}} . \tag{25}
\end{align*}
$$

According to the expressions (16) of C_{0} and (19) of C, (21), (23)-(25) can be written:

$$
C_{0}(., H)=-\frac{1}{G_{1} G_{2} f_{1}(H) f_{2}(F)} C(., F)
$$

We now present an example illustrating the results achieved in proposition 3.
Example: Kolossof Hamiltonian [10]. It has been permitted to linearize the well known Kovalevskaya top.

We consider $M=\mathbb{R}^{4}$ with canonical coordinates $\left(x, y, p_{x}, p_{y}\right), C_{0}$ is the standard Poisson structure, and H, the square of Kolossof Hamiltonian given by

$$
\begin{equation*}
H=\left\{\frac{1}{2} p_{x}^{2}+\frac{1}{2} p_{y}^{2}+\frac{x^{2}+y^{2}-k x+1}{\sqrt{x^{2}+y^{2}}}\right\}^{\frac{1}{2}} \quad k \in \mathbb{R}^{*} \tag{26}
\end{equation*}
$$

A direct calculation leads to the equation

$$
\begin{equation*}
C_{0}(., H)=\frac{1}{-4 k^{2}(x-k)^{2} H \sqrt{F}} C(., F) \tag{27}
\end{equation*}
$$

where C is a second Poisson structure compatible with C_{0}, given by the following matrix

$$
C=\left(\begin{array}{cccc}
0 & 0 & (x-k)^{2} & (x-k) y \tag{28}\\
0 & 0 & (x-k) y & y^{2}+k^{2} \\
-(x-k)^{2} & -(x-k) y & 0 & (x-k) p_{y}-y p_{x} \\
-(x-k) y & -\left(y^{2}+k^{2}\right) & -(x-k) p_{y}+y p_{x} & 0
\end{array}\right)
$$

and

$$
\begin{equation*}
F=\left\{-\frac{1}{2}\left(k^{2}+y^{2}\right) p_{x}^{2}+(x-k) y p_{x} p_{y}-\frac{1}{2} p_{y}^{2}(x-k)^{2}-\frac{k(x-k)(k x-1)}{\sqrt{x^{2}+y^{2}}}\right\}^{2} \tag{29}
\end{equation*}
$$

So, $\left(\mathbb{R}^{4}, C_{0}, H\right)$ admits a QBHS with an integrating factor separable $\rho=-4 k^{2}(x-$ $k^{2} H \sqrt{F}$.

The eigenvalues λ_{1} and λ_{2} of the Nijenhuis operator $J=C C_{0}^{-1}$ satisfy

$$
\begin{align*}
& \lambda_{1} \lambda_{2}=k^{2}(x-k)^{2} \tag{30a}\\
& \lambda_{1}+\lambda_{2}=(x-k)^{2}+y^{2}+k^{2} \tag{30b}
\end{align*}
$$

and are functionally independent. So, we can find Nijenhuis coordinates ($\lambda_{1}, \lambda_{2}, p_{\lambda_{1}}, p_{\lambda_{2}}$). The second part of the canonical transformation is given by

$$
\begin{align*}
& p_{x}=-2 k \sqrt{\lambda_{1} \lambda_{2}}\left(\frac{p_{\lambda_{1}}-p_{\lambda_{2}}}{\lambda_{1}-\lambda_{2}}\right)+2 \frac{\sqrt{\lambda_{1} \lambda_{2}}}{k}\left(\frac{\lambda_{1} p_{\lambda_{1}}-\lambda_{2} p_{\lambda_{2}}}{\lambda_{1}-\lambda_{2}}\right) \tag{31a}\\
& p_{y}=2 \frac{\lambda_{1} p_{\lambda_{1}}-\lambda_{2} p_{\lambda_{2}}}{\lambda_{1}-\lambda_{2}} \sqrt{\lambda_{1}+\lambda_{2}-\frac{\lambda_{1} \lambda_{2}}{k^{2}}-k^{2} .} \tag{31b}
\end{align*}
$$

The relations $(30 a, b)$ and $(31 a, b)$ allow us to write H and F explicitly in the Nijenhuis coordinates:

$$
\begin{align*}
& H=\left\{\frac { 1 } { \lambda _ { 2 } - \lambda _ { 1 } } \left(\left(2 \lambda_{2}^{2}-2 k^{2} \lambda_{2}\right) p_{\lambda_{2}}^{2}+\lambda_{2}^{\frac{3}{2}}+\left(1-k^{2}\right) \lambda_{2}^{\frac{1}{2}}\right.\right. \\
& \tag{32}\\
& \left.\left.\quad-\left(\left(2 \lambda_{1}^{2}-2 k^{2} \lambda_{1}\right) p_{\lambda_{1}}^{2}+\lambda_{1}^{\frac{3}{2}}+\left(1-k^{2}\right) \lambda_{1}^{\frac{1}{2}}\right)\right)\right\}^{\frac{1}{2}} \\
& \tag{33}
\end{align*}
$$

We see that

$$
\begin{aligned}
& H=h\left(\frac{H_{2}\left(\lambda_{2}, p_{\lambda_{2}}\right)-H_{1}\left(\lambda_{1}, p_{\lambda_{1}}\right)}{\lambda_{2}-\lambda_{1}}\right) \\
& F=g\left(\frac{-\lambda_{1} H_{2}\left(\lambda_{2}, p_{\lambda_{2}}\right)+\lambda_{2} H_{1}\left(\lambda_{1}, p_{\lambda_{1}}\right)}{\lambda_{2}-\lambda_{1}}\right)
\end{aligned}
$$

which imply Hamilton-Jacobi separability.

4. Some ideas for the general case

For the general case we must also obtain some relations between $L V(H), L V(F)$ and $L V(f)$. The next proposition contains some indications for such a study in the future.

Proposition 5. Let ($\left.M, C_{0}, H, C, F, \rho=-\lambda_{1} \lambda_{2} f(H, F)\right)$ be a QBHS. In terms of Nijenhuis coordinates, the following relations hold

$$
\begin{align*}
L V(H) & =-\frac{1}{\lambda_{1}^{2} \lambda_{2} f^{3}} L V(F) \tag{34}\\
L V(f) & =\left(\frac{\partial f}{\partial H}-\lambda_{2} f \frac{\partial f}{\partial F}\right)\left(\frac{\partial f}{\partial H}-\lambda_{1} f \frac{\partial f}{\partial F}\right)^{2} L V(H) \tag{35}
\end{align*}
$$

($L V$ indicates the Levi-Civita operator (4)).

Proof. The proof is based on a direct calculation as follows.
(i) We get, in Nijenhuis coordinates, the value of the Levi-Civita operator applied to H : $L V(H)$; then we inject in $L V(H)$ the equations provided by the relation definition (1) of the QBHS (with $\rho=-\lambda_{1} \lambda_{2} f$). By a grouping together of suitable terms, we obtain (34).
(ii) We search to identify $L V(H)$ or $L V(F)$ in $L V(f)$. Then using (34), we obtain (35).

Remark 3. We observe that

$$
\left(\frac{\partial f}{\partial H}-\lambda_{i} f \frac{\partial f}{\partial F}\right)=\frac{\frac{\partial H}{\partial \lambda_{j}}}{\frac{\partial f}{\partial \lambda_{j}}}
$$

$i, j=1,2$ and $i \neq j$. So they do not vanish as $\frac{\partial H}{\partial \lambda_{i}} \neq 0$ and $\frac{\partial f}{\partial \lambda_{i}} \neq 0$ for $i=1,2$ (conditions always assumed for the Levi-Civita operator $L V$). Therefore we conclude that the study of the separability of the Hamilton-Jacobi equation associated with the Hamiltonian H can be subordinated to the value of $L V(f)$ one.

Acknowledgment

The author would like to thank Robert Brouzet for his suggestions and remarks on the material presented in this paper.

References

[1] Arnol’d V I (ed) 1976 Méthodes Mathématiques de la Mécanique Classique (Moscow: MIR)
[2] Arnol'd V I (ed) 1988 Dynamical Systems vol III (Berlin: Springer)
[3] Arnol'd V I and Novikov S P (ed) 1990 Dynamical Systems vol IV (Berlin: Springer)
[4] Brouzet R 1990 Systèmes bihamiltoniens et complète intégrabilité en dimension 4 C. R. Acad. Sci. 311 895-8
[5] Brouzet R 1991 Géométrie des systèmes bihamiltoniens en dimension 4 Thèse l'Université Montpellier 2
[6] Brouzet R 1993 About the existence of recursion operators for completely integrable Hamiltonian systems near a Liouville torus J. Math. Phys. 34 1309-13
[7] Brouzet R, Caboz R, Rabenivo J and Ravoson V 1996 Two degrees of freedom quasi-bi-Hamiltonian systems J. Phys. A: Math. Gen. 29 2069-76
[8] Fernandes R L 1994 Completely integrable bihamiltonian systems J. Dynam. Diff. Eqns 6 53-69
[9] Huaux A 1976 Sur la séparation des variables dans l'équation aux dérivées partielles de Hamilton-Jacobi Ann. Mat. Pura Appli. CVIII 251-82
[10] Kolossoff G 1903 Zur rotation eines korpers im kowalewski'schen falle Math. Ann. 56 265-72
[11] Kosmann-Schwarzbach Y and Magri F 1996 Lax-Nijenhuis operators for integrable systems J. Math. Phys. 37 6173-97
[12] Magri F 1978 A simple model of the integrable Hamiltonian equation J. Math. Phys. 19 1156-62
[13] Magri F and Morosi C 1984 A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds Publ. Dep. Math. Univ. Milan
[14] Rabenivo J 1995 Structure quasi-bihamiltonienne de Jacobi Poisson-conforme Thèse l'Université de Pau et des Pays de l'Adour
[15] Ravoson V $1992(r, s)$-structure bihamiltonienne, séparabilité, paire de Lax et intégr-bilité Thèse l'Université de Pau et des Pays de l'Adour
[16] Smirnov R G 1997 Magri-Morosi-Gel'fand-Dorfman's bi-Hamiltonian constructions in the action-angle variables J. Math. Phys. 38 6444-54

[^0]: \dagger E-mail address: rabenivo@univ-pau.fr

